Construction of Multivariate Compactly Supported Tight Wavelet Frames
نویسندگان
چکیده
Two simple constructive methods are presented to compute compactly supported tight wavelet frames for any given refinable function whose mask satisfies the QMF or sub-QMF conditions in the multivariate setting. We use one of our constructive methods in order to find tight wavelet frames associated with multivariate box splines, e.g., bivariate box splines on a three or four directional mesh. Moreover, a construction of tight wavelet frames with maximum vanishing moments is given, based on rational masks for the generators. For compactly supported bi-frame pairs, another simple constructive method is presented. AMS(MOS) Subject Classifications: Primary 42C15, Secondary 42C30
منابع مشابه
A pr 2 00 7 Multivariate Wavelet Frames 1
We proved that for any matrix dilation and for any positive integer n, there exists a compactly supported tight wavelet frame with approximation order n. Explicit methods for construction of dual and tight wavelet frames with a given number of vanishing moments are suggested.
متن کاملConstruction of compactly Supported Conjugate Symmetric Complex Tight Wavelet Frames
Two algorithms for constructing a class of compactly supported complex tight wavelet frames with conjugate symmetry are provided. Firstly, based on a given complex refinable function φ, an explicit formula for constructing complex tight wavelet frames is presented. If the given complex refinable function φ is compactly supported conjugate symmetric, then we prove that there exists a compactly s...
متن کاملPopular Wavelet Families and Filters and Their Use
Glossary 5 Introduction 6 Definition of Wavelets 7 Definition of Filters 8 Multi-Resolution Analysis 9 Wavelet Decomposition and Reconstruction 10 Refinable Functions 11 Compactly Supported Orthonormal Wavelets 12 Parameterization of Orthonormal Wavelets 13 Biorthogonal Wavelets 14 Prewavelets 15 Tight Wavelet Frames 16 Tight Wavelet Frames over Bounded Domain 17 q-Dilated Orthonormal Wavelets ...
متن کامل